
On the quasiparticle spectrum and maxima of the dynamic ion structure factor in liquid metals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys.: Condens. Matter 1 9665

(http://iopscience.iop.org/0953-8984/1/48/015)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 10/05/2010 at 21:11

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/1/48
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter l(198Y) 9665-9669. Printed in the UK 

On the quasiparticle spectrum and maxima of the 
dynamic ion structure factor in liquid metals 
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Moscow 127412, USSR 

Received 4 October 1988 

Abstract. The ion density-density retarded Green function of an elementary liquid metal 
has been investigated in terms of the electron-ion interaction pseudopotential. This notion 
has been used for studying the spectrum of quasiparticles due to ion excitations, w , ( k ) ,  and 
its relation to the position of the maximum, wmaX(k), of the dynamic ion structure factor. 
Numerical calculations for liquid rubidium show that the quasiparticles are well defined 
within the region of k s 1 A-],  where deviations are found from the acoustic-dispersion 
curve. 

Detailed experimental information is available at present on the behaviour of the 
dynamic ion structure factor, S,,(k,  U), in liquid metals as measured in the experiments 
on inelastic neutron scattering (Cocking and Egelstaff 1965, Glaser et a1 1972, Copley 
and Rowe 1974). Considerable progress has also been made in theoretical examination 
of the function S,,(k, U) (Rahman 1974, Goda and Osabe 1978), the examination being 
reduced to the description of S,,(k, w) followed by the construction of the dependence 
w,,,(k) for the position of the maximum in S,,(k,  w).  The curve w,,,(k) for a given 
system is usually interpreted as the spectrum of quasiparticles in the system. It is natural 
in this connection to pose the question about quasiparticles in the ion subsystem of a 
liquid metal. This requires an examination of the complex poles, w , ( k ) ,  of the ion 
density-density retarded Green function, L f  ( k ,  w), that completely determines the 
spacetime behaviour of the mean ion density in a weak applied field and is directly 
related to the dynamic structure factor S,,(k, w) (for real U): 

S, , (k ,  w) = - 2h[1 - exp( -hw/T)] - '  Im L;(k ,  w) (1) 

LFb(k, U) = - d t  exp(iwt)([b;(t), b!!+(O)]). av I,' 
Here ,&(t) stands for the Fourier component of the density (number of particles per unit 
volume) operator for the particles of type a, characterised by charge z,, mass ma 
and density n,, in the Heisenberg representation; ( a  * a )  designates averaging with the 
equilibrium Gibbs operator corresponding to the exact Hamiltonian for the considered 
two-component plasma of the liquid metal, for which Ca=e, i  z,n, = 0, e denoting elec- 
trons, and i ,  ions; Vis the volume of the system. The definition (2) is to be understood 
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in the limit of thermodynamics: V -  X ,  n, = N,/V = constant. Naturally, quasiparticles 
can only exist if 

yi = Im wi(k)/Re w i ( k )  4 1. (3) 
Thus, on defining L ! ( k ,  w) as a function of the complex variable CO, one can examine 
Sii(k, w )  and determine the quasiparticle spectrum q ( k )  and the way it is related to 

For complex w,  the retarded Green function LF(k,  U) is the analytic extension of 
the corresponding temperature Green function, L:(k ,  i n ) ,  from the discrete set of 
points Qn = 2nn/T, n = 0, 1, . . . , into the upper half-plane of the complex w .  Tem- 
perature Green functions can be calculated by means of the well developed diagram 
technique (Abrikosov et a1 1962). The technique makes it easy to ascertain that 

m m a x ( k ) .  

Lih(k, iQ)  = n & ( k ,  iQ)  + C, n,T,(k, iQ)u,,(k)L,T,(k, iQ).  (4 )  
cd 

Here Ua, (k )  = 4 n z i / k 2 ;  U e i ( k )  = 4nz ,z , /k2  + q (k)isthelocalmodelpseudopotential 
of electron-ion interaction, with I q ( k -  0)i < "0; stands for the polarisation oper- 
ator, which is the part of the Green function Lib ( k ,  i n )  irreducible in the 'k-channel' 
along one line of interaction. In the case of weak electron-ion interaction (in terms of 
the pseudopotential), the contribution of the functions I I z ( k ,  i n )  and II; ( k ,  iR)  can 
be neglected and advantage can be taken of the approximate equality II& ( k ,  i n )  = 
IIL:) ( k ,  iQ) ,  with IIi!)(k, iQ)  denoting the exact polarisation operator for the electron 
fluid in the positive correcting background (Trigger 1976). As a result of the procedure 
of analytic extension, we obtain 

L ! ( k ,  w) = ng(k, o ) ( l  - ue , ( k )n$ (k ,  w ) ) / F ( k ,  CO) ( 5 )  

with 

F ( k ,  0) = 1 - u,,(k)IIg)(k, w) - uii(k)n;(k, 0) 

- n;(k, w)ni:)(k, w)(u:i(k) - Uee(k)uii(k))* (6) 

Taking into account the fact that I q ( k )  1 4 kuF, where uF = (75/m,)(3n2n,)1/3i~ the Fermi 
velocity of the free electron, we derive from ( 5 ) ,  (6) that 

L!(k ,  0) = n;(k, w)(l  - U!ff(k)IIf(k, CO>)-' 

UEff(k) = Uii(k) + U%i(k)IIi:)(k, 0)(1 - U,,(k)Ili!)(k,  O))-'. 

(7) 

(8) 

with the effective potential of ion-ion interaction, Uiff(k), given by 

Within the approximation in question, the function IIg(k,  i n )  is no other than that part 
of the function L i ( k ,  i R )  for the one-component ion fluid with the short-range inter- 
action potential Ugff(k) which is irreducible in the 'k-channel' along one interaction line. 
This accounts for the qualitative similarity in the behaviour of the dynamic structure in 
inert liquids and liquid metals. The difference is associated with the particular shape of 
the potential. 

It follows from (7) that the poles wi(k)  of the Green function L ; ( k ,  w) can be 
determined from the expression 

&(k,  0) = 1 - u;ff(k)nf(k, U) = 0 (9) 
which is equivalent to the equation for the natural longitudinal oscillations of charge in 
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the electron fluid (Silin 1971) and solved for real k .  As mentioned above, quasiparticles 
are out of the question unless the condition (3) is satisfied. Therefore the quantity 
Re u i ( k )  should be determined from the equation 

In this case 

Solving (9), (10) requires that the function IIf(k, w )  be calculated for the case of 
strong interaction. By analogy with the electron fluid theory (Geldart and Vosko 1966), 
we shall allow for correlation effects by means of the function G,,(k,  0): 

I Ip (k ,  w )  = IIp'"(k, o)(l+ UEff(k)G,,(k, w)IIf'"(k,  w))- '  (12) 

where IIfPA(k, U )  is the polarisation operator for the zero estimate of the interaction 
(random-phase approximation). Since lhw,(k)I < T for elementary liquid metals, we 
can confine ourselves to the case of classical statistics. Then (Sitenko 1965) 

nppA(k, w )  = - ( n , / q { I  - m(z)  + i JC'/*Z exp(-z2)}; 

m(z )  = 2z2 exp(-z2) dx  exp(x2), z = (mIw/2Tk)"'.  (13) 1: 
It is natural to suppose that all the effects of the w-dependence of IIf(k,  w )  are included 
in IIp'"(k, o), i.e., C,,(k, w )  = G,,(k) .  Taking into account that, within the framework 
of classical statistics 

S , , ( k ,  w )  = - (2T/o)  Im L p ( k ,  U )  

we arrive, from (7), (12), (13), at 

~ , , ( k ,  w )  = (T/n,UEff(k))C, , (k)  + 1. 

Here S,,(k) is the static structure factor and C,,(k)  is the direct correlation function 

C , , ( k )  = ( M k )  - 1 ) m k ) .  (15) 

Note that the expression for S(k,  0) obtained through the use of the approximation (14) 
coincides with that derived by Nelkin and Ranganathan (1967) with the aid of the kinetic 
equation. For small values of k there exists a solution of (10) that describes slow-damped 
acoustic vibrations in the liquid metal 

Re  w , ( k )  = Sk. (16) 
For the calculations for liquid rubidium at T = 320 K we make use of the pseu- 

dopotential due to Ashcroft (1968) with the parameter rA = 2 atomic units and the 
structure factor corresponding to the hard-sphere potential (Wertheim 1963). The 
packing parameter, q ,  was determined by the experimental value of the isothermal 
compressibility of liquid rubidium, K ~ ,  with the help of the relation 
limk+O S , , ( k )  = n,TrcT ( q  = 0.463). The function II$!)(k, 0) was calculated in the 
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Figure 1. The position of the maximum in the 
dynamic ion structure factor: full circles, the 
experimental data of Copley and Rowe (1974); 

0 k [A-’) * ’ vertical bars, the experimental data of Glaser etal 
(1972); chained curve, the present calculation; 
broken curve, the numerical solution of (10) with 
the RPA value of @ ( k ,  0); solid line, the numeri- 

-5  calsolutionof(l0)with thevalueofII$:)(k, 0)due or to Geldart and Vosko (1966). The results of cal- 
-10 1 culations for the damping factor y, are plotted on 

a logarithmic scale at the bottom. 

random-phase approximation (RPA) using the expression derived by Gerdart and Vosko 
(1966). 

Figure 1 presents the results of calculations for liquid rubidium at a temperature of 
320 K and the comparison with experimental data (Copley and Rowe 1974, Glaser et a1 
1972). First of all, it should be noted that the calculated k-dependence of the position 
of the peaks in the o-dependence of Sii(k, w) is in satisfactory agreement with the 
experlmental data. It is essential that the solution of (10) virtually coincides with the 
calculated k-dependence of the position of the peaks in Sii(k, 0). But, as indicated 
above, the quasiparticles are well defined only if the damping factor y, is small. The 
calculation has shown that yi is quite a quickly increasing function of k .  On the assumption 
that the condition of existence of the quasiparticles is given by yi s 1/10, the extreme 
magnitude of the wavevector for liquid rubidium under the specified conditions is k,,, = 
1 A-’, the dispersion curve significantly differing at k = k,,, from the ordinary acoustic 
one, realised for small wavenumbers. Moreover, the one-to-one correspondence in the 
dispersion curve is not fulfilled in the region of well defined quasiparticles: two values 
of wavelength correspond to one value of w. Apparently, this effect can be directly 
investigated in the experiments on sound-wave propagation in liquid metals. It can be 
seen from the calculations that the break in the curve o,, ,(k) is caused by the cir- 
cumstance that yi 3 1 within a corresponding region of wavevectors. It is interesting that 
in this region the solution of (10) has the form similar to the minimum in the roton region 
in superfluid helium. However, in accordance with the above, rotons do not exist as 
quasiparticles in liquid metals. Note that the difference in the expressions used for 
II$(k, 0) does not tell on the magnitude of the function lg Ai.  

In conclusion, it should be noted that using the concept of quasiparticles in the 
excited ion subsystem of a liquid metal and the information concerning their spectra 
allows the thermodynamic characteristics of the ion subsystem to be considered in a 
similar manner to that for the case of solid metals, where phonons are introduced as 
quasiparticles. 
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